Fast Methods for Solving Linear Diophantine Equations
نویسندگان
چکیده
We present some recent results from our research on methods for finding the minimal solutions to linear Diophantine equations over the naturals. We give an overview of a family of methods we developed and describe two of them, called Slopes algorithm and Rectangles algorithm. From empirical evidence obtained by directly comparing our methods with others, and which is partly presented here, we are convinced that ours are the fastest known to date when the equation coefficients are not too small (ie., greater than 2 or 3).
منابع مشابه
Solving Linear Diophantine Equations
An overview of a family of methods for nding the minimal solutions to a single linear Diophantine equation over the natural numbers is given. Most of the formal details were dropped, some illustrations that might give some intuition on the methods being presented instead.
متن کاملComplete Solving of Linear
In this paper, we present an algorithm for solving directly linear Diophantine systems of both equations and inequations. Here directly means without adding slack variables for encoding inequalities as equalities. This algorithm is an extension of the algorithm due to Con-tejean and Devie 9] for solving linear Diophantine systems of equations, which is itself a generalization of the algorithm o...
متن کاملOn Solving Linear Diophantine Systems Using Generalized Rosser’s Algorithm
A difficulty in solving linear Diophantine systems is the rapid growth of intermediate results. Rosser’s algorithm for solving a single linear Diophatine equation is an efficient algorithm that effectively controls the growth of intermediate results. Here, we propose an approach to generalize Rosser’s algorithm and present two algorithms for solving systems of linear Diophantine equations. Then...
متن کاملDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کامل